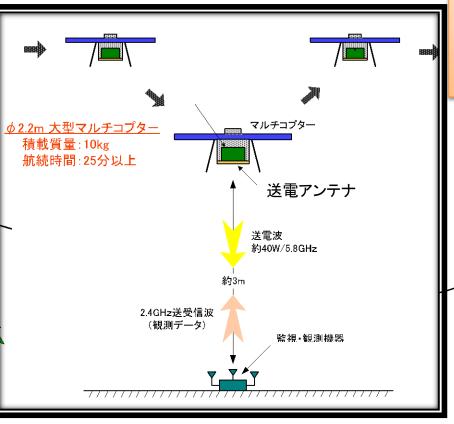


Integrated Program for Next Generation Volcano Research and Human Resource Development

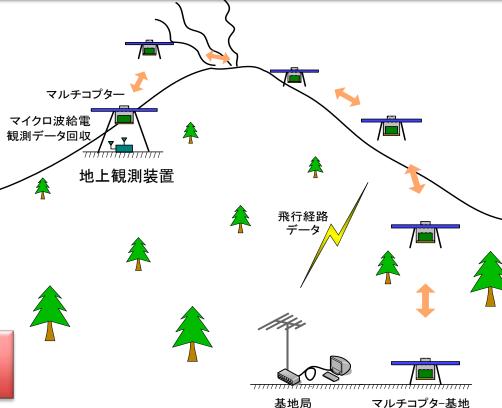
次世代火山研究・人材育成総合ブロジェクト 総合協議会(第4回) H30.11.14

次世代火山研究推進事業 課題B2-1: 火山観測に必要な新たな観測技術の開発

空中マイクロ波送電技術を用いた火山観測・監視装置の開発


課題責任者 九州大学 地震火山観測研究センター 松島 健

九州大学 地震火山観測研究センター 清水 洋 京都大学 生存圏研究所 篠原 真毅 京都大学 防災研究所 井口 正人 (株) 翔エンジニアリング 藤原 暉雄

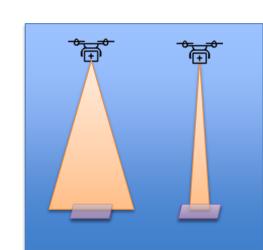


Integrated Program for Next Generation Volcano Research and Human Resource Development

開発コンセプト

近年急速に技術革新が著しい無人航空機 (ドローン)技術と、実用化に向けて着々と実 験が進んでいるマイクロ波送電技術を組み 合わせて、活火山の等の到達不可能地域 における観測・監視装置への給電・データ回 収を効率的に行う(効率目標 10%)

ソーラパネル等が噴火で破損した場合でも、噴火時の貴重なデータを安全に回収する.


Integrated Program for Next Generation Volcano Research and Human Resource Development

平成28年度

- ◆屋外におけるUAVからの空中マイクロ波送電実験に日本で初めて成功(@伊豆大島)
- ◆ 地上に設置されている温度センサーに電力を送り、温度を 計測してデータをUAVに送信することに成功.
- ◆ 広域照射用のアンテナを使用したため、エネルギーの伝送効率は0.1%以下
- ◆ 地震やGNSS観測やデータ回収には電力不足 別電源でデータ送信する装置の開発・送信実験を行った

平成29年度

- ◆ 狭ビームの送電アンテナの設計・作成・屋内 実験.
- ◆ 地震波形やGNSSデータを上空に飛来した UAVに送信するデータ送信装置の開発.
- ◆効率のよい送電のために、UAVの飛行 精度の検証

Integrated Program for Next Generation Volcano Research and Human Resource Development

H29年度

狭ビームの送電アンテナの設計・作成・屋内実験

空中マイクロ波送電で使用するために設計・試作した送電アンテナと受信アンテナの送電実験を行い、放射パターンを測定するとともに、空間電力伝達率を測定する。

送電アンテナ

•送電周波数 : 2.45GHz

・アンテナ方式: マイクロストリップアレイ

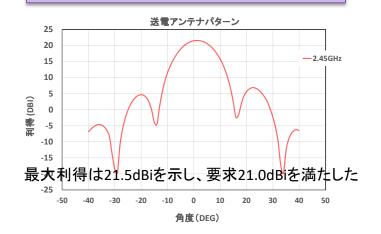
•素子数: 32素子

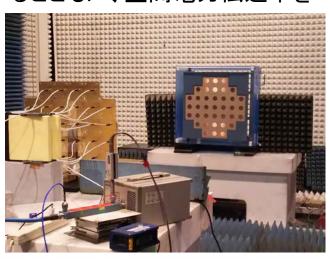
·最大動作利得 : 21.5dBi(21.0dBi以上)

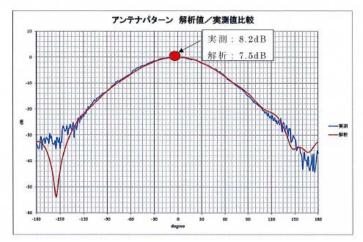
•偏波 :右旋円偏波

·形状·サイズ: 510mmx510mm(550mm以下)

·質量:600kg(1kg以下)

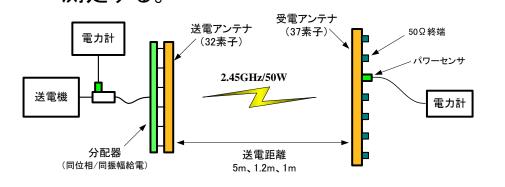

受信アンテナ


・受信周波数 : 2.45GHz ・偏波 : 右旋円偏波


・アンテナ方式: マイクロストリップレクテナアレイ

•素子数: 37素子

•動作利得: 6.89dbi~8.62dbi(7.5dBi以上)



Integrated Program for Next Generation Volcano Research and Human Resource Development

H29年度

狭ビームの送電アンテナの設計・作成・屋内実験

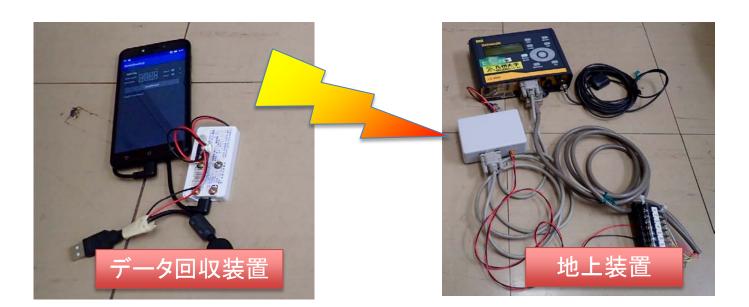
空中マイクロ波送電で使用するために設計・試作した送電アンテナと受信アンテナの送電実験を行い、放射パターンを測定するとともに、空間電力伝達率を測定する。

空間電力伝達率

送電距離(m)	送電電力 (W)	受電電力 (W)	空間電力 伝達率
3	57.3	12.2	0.213
1.2	57.6	26.2	0.455
1	51.2	30	0.586

今回試作した2.4GHz帯の送電機のDC/RF変換率は 0.551

受信側における整流器のRF/DC変換効率は、0.830 ~0.846


距離が3mの場合の総合的な電力送電効率は、 0.551×0.213×0.830~0.846 = 0.097~0.099となり、 目標としている電力送電効率10%にはわずかに及 ばなかった

Integrated Program for Next Generation Volcano Research and Human Resource Development

| H29年度|| 火山観測・監視装置の開発

- ❖ 使用デバイスの変更 Wi Fi SD カード -> Raspberry Pi : 消費電力・プログラムの自由度で有利
- ◆ 地震観測装置 (白山工業製LS8800)に接続し、地震データを蓄積
- ❖ UAVに搭載したデータ回収装置と無線LANで接続し、1日分の地震データ(約 28MB)を約2分間で回収できた(到達距離30 m)
- ❖ GNSS装置と接続可能.

Integrated Program for Next Generation Volcano Research and Human Resource Development

H29年度

無人航空機運用技術検討の実施

効率のよいマイクロ波送受電⇒送電されたマイクロ波ビームを地上で 確実に受信できることが重要

- ▶ UAVの位置精度の検証実験(10月@群馬県片品村, 12月栃木県 鹿沼市・佐野市)
- ▶ 反射鏡を搭載して、地上からトータルステーションで測量
- ➤ RTK-GPS装置を搭載して、フライトログを取得.
 - ⇒UAV自律航法の精度は水平で2,3m,高度で数m GNSS単独測位・気圧高度計の精度が悪い.

対策1:準天頂衛星「みちびき」のセンチメータ級測位補強を組込む

対策2: 地上装置側から, 誘導ビーコン信号を送る

Integrated Program for Next Generation Volcano Research and Human Resource Development

H29年度

UAVの位置精度の検証実験・データ回収装置動作実験 (12月栃木県鹿沼市・佐野市)

Integrated Program for Next Generation Volcano Research and Human Resource Development

平成30年度実施事項

- ▶ マイクロ波送受電アンテナの効率改良作業(4月~)実験(8月)
- ▶ 屋外実験のための免許申請(4月~)
- ▶ マイクロ波送電(2.4GHz)の干渉実験(6月)
 - ●GNSS測位には影響はない.
 - ●無線LANには想定以上に干渉大. 送電とデータ回収の並行作業不可.
 - →送電作業とデータ回収を時間的に分ける?
 - →5.8GHz送電への変更検討
- ➤ 地上観測装置の改良(10月~)GNSSデータ位相データの蓄積
- ➤ UAVの飛行精度の向上
 - ●みちびき導入 UAVメーカーにて検討中. みちびきサービスインの 遅延あり
 - ●ビーコン誘導 検討・設計中
- ▶ 屋外実験 2019年3月に桜島黒髪地区で計画中
 - ●作成した火山観測機器を実際に桜島に設置して長期運用を行い、 無人航空機によるマイクロ波送電およびデータ回収実験を実施.